Activation of protein tyrosine kinases and matrix metalloproteinases causes blood-brain barrier injury: Novel mechanism for neurodegeneration associated with alcohol abuse.
نویسندگان
چکیده
Blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC) regulates the passage of molecules and leukocytes in and out of the brain. Activation of matrix metalloproteinases (MMPs) and alteration of basement membrane (BM) associated with BBB injury was documented in stroke patients. While chronic alcoholism is a risk factor for developing stroke, underlying mechanisms are not well understood. We hypothesized that ethanol (EtOH)-induced protein tyrosine kinase (PTK) signaling resulted a loss of BBB integrity via MMPs activation and degradation of BM component, collagen IV. Treatment of BMVEC with EtOH or acetaldehyde (AA) for 2-48 h increased MMP-1, -2 and -9 activities or decreased the levels of tissue inhibitors of MMPs (TIMP-1, -2) in a PTK-dependent manner without affecting protein tyrosine phosphatase activity. Enhanced PTK activity after EtOH exposure correlated with increased phosphorylated proteins of selective receptor and nonreceptor PTKs. Up-regulation of MMPs activities and protein contents paralleled a decrease in collagen IV content, and inhibitors of EtOH metabolism, MMP-2 and -9, or PTK reversed all these effects. Using human BMVEC assembled into BBB models, we found that EtOH/AA diminished barrier tightness, augmented permeability, and monocyte migration across the BBB via activation of PTKs and MMPs. These findings suggest that alcohol associated BBB injury could be mediated by MMPs via BM protein degradation and could serve as a comorbidity factor for neurological disorders like stroke or neuroinflammation. Furthermore, our preliminary experiments indicated that human astrocytes secreted high levels of MMP-1 and -9 following exposure to EtOH, suggesting the role of BM protein degradation and BBB compromise as a result of glial activation by ethanol. These results provide better understanding of multifaceted effects of alcohol on the brain and could help develop new therapeutic interventions.
منابع مشابه
The mechanisms of cerebral vascular dysfunction and neuroinflammation by MMP-mediated degradation of VEGFR-2 in alcohol ingestion.
OBJECTIVE Blood-brain barrier (BBB) dysfunction caused by activation of matrix metalloproteinases (MMPs) is a pathological feature in vascular/neurological disease. We describe the mechanisms of BBB dysfunction and neuroinflammation as a result of MMP-3/9 activation and disruption of vascular endothelial growth factor (VEGF)-A/VEGFR-2 interaction, impairing effective angiogenesis. METHODS AND...
متن کاملP 88: Matrix Metalloproteinases in Neuroinflammation
Matrix metalloproteinases (MMPs) are a family of neutral proteinases that are important in normal development, cellular differentiation or migration, angiogenesis, neurogenesis, wound repair, and a wide range of pathological processes such as oxidative stress and neuroinflammation. MMPs have been demonstrated to increase the permeability of the blood–brain barrier (BBB) by degrading the c...
متن کاملMinocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation
Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...
متن کاملThe Liver-Brain Axis of Alcohol-Mediated Neurodegeneration: Role of Toxic Lipids
Alcohol abuse causes progressive toxicity and degeneration in liver and brain due to insulin resistance, which exacerbates oxidative stress and pro-inflammatory cytokine activation. Alcohol-induced steatohepatitis promotes synthesis and accumulation of ceramides and other toxic lipids that cause insulin resistance. Ceramides can readily cross the blood-brain barrier, and ceramide exposure cause...
متن کاملEthanol impairs glucose uptake by human astrocytes and neurons: protective effects of acetyl-L-carnitine.
Alcohol consumption causes neurocognitive deficits, neuronal injury, and neurodegeneration. At the cellular level, alcohol abuse causes oxidative damage to mitochondria and cellular proteins and interlink with the progression of neuroinflammation and neurological disorders. We previously reported that alcohol inhibits glucose transport across the blood-brain barrier (BBB), leading to BBB dysfun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Glia
دوره 56 1 شماره
صفحات -
تاریخ انتشار 2008